Gigabit Ethernet сетевой адаптер PCI Express. Gigabit Ethernet сетевой адаптер PCI Express экранированные витые пары


Gigabit Ethernet

Сейчас идет много разговоров о том, что пора бы уж массово переходить на гигабитные скорости при подключении конечных пользователей локальных сетей, а также опять поднимается вопрос об оправданности и прогрессивности решений «волокно до рабочего места», «волокно до дома» и т.п. В связи с этим данная статья, описывающая стандарты не только на медные, но и, главным образом, на оптоволоконные интерфейсы GigE, будет вполне уместна и своевременна.

архитектура стандарта Gigabit Ethernet

На рис.1 показана структура уровней Gigabit Ethernet. Как и в стандарте Fast Ethernet, в Gigabit Ethernet не существует универсальной схемы кодирования сигнала, которая была бы идеальной для всех физических интерфейсов - так, с одной стороны, для стандартов 1000Base-LX/SX/CX используется кодирование 8B/10B, а с другой стороны, для стандарта 1000Base-T используется специальный расширенный линейный код TX/T2. Функцию кодирования выполняет подуровень кодирования PCS, размещенный ниже среданезависимого интерфейса GMII.

Рис. 1. Структура уровней стандарта Gigabit Ethernet, GII интерфейс и трансивер Gigabit Ethernet

GMII интерфейс . Среданезависимый интерфейс GMII (Gigabit Media Independent Interface) обеспечивает взаимодействие между уровнем MAC и физическим уровнем. GMII интерфейс является расширением интерфейса MII и может поддерживать скорости 10, 100 и 1000 Мбит/с. Он имеет отдельные 8 битные приемник и передатчик, и может поддерживать как полудуплексный, так и дуплексный режимы. Кроме этого, GMII интерфейс несет один сигнал, обеспечивающий синхронизацию (clock signal), и два сигнала состояния линии - первый (в состоянии ON) указывает наличие несущей, а второй (в состоянии ON) говорит об отсутствии коллизий - и еще несколько других сигнальных каналов и питание. Трансиверный модуль, охватывающий физический уровень и обеспечивающий один из физических средазависимых интерфейсов, может подключать например к коммутатору Gigabit Ethernet посредством GMII-интерфейса.

Подуровень физического кодирования PCS. При подключении интерфейсов группы 1000Base-X, подуровень PCS использует блочное избыточное кодирование 8B10B, заимствованное из стандарта ANSI X3T11 Fibre Channel. Аналогичного рассмотренному стандарту FDDI, только на основе более сложной кодовой таблицы каждые 8 входных битов, предназначенных для передачи на удаленный узел, преобразовываются в 10 битные символы (code groups). Кроме этого в выходном последовательном потоке присутствуют специальные контрольные 10 битные символы. Примером контрольных символов могут служить символы, используемые для расширения носителя (дополняют кадр Gigabit Ethernet до его минимально размера 512 байт). При подключении интерфейса 1000Base- T, подуровень PCS осуществляет специальное помехоустойчивое кодирование, для обеспечения передачи по витой паре UTP Cat.5 на расстояние до 100 метров - линейный код TX/T2, разработанный компанией Level One Communications.

Два сигнала состояния линии - сигнал наличие несущей и сигнал отсутствие коллизий - генерируются этим подуровнем.

Подуровни PMA и PMD. Физический уровень Gigabit Ethernet использует несколько интерфейсов, включая традиционную витую пару категории 5, а также многомодовое и одномодовое волокно. Подуровень PMA преобразует параллельный поток символов от PCS в последовательный поток, а также выполняет обратное преобразование (распараллеливание) входящего последовательного потока от PMD. Подуровень PMD определяет оптические/электрические характеристики физических сигналов для разных сред. Всего определяются 4 различный типа физических интерфейса среды, которые отражены в спецификация стандарта 802.3z (1000Base-X) и 802.3ab (1000Base-T), (рис.2).

Рис. 2. Физические интерфейсы стандарта Gigabit Ethernet

интерфейс 1000Base-X

Интерфейс 1000Base-X основывается на стандарте физического уровня Fibre Channel. Fibre Channel - это технология взаимодействия рабочих станций, суперкомпьютеров, устройств хранения и периферийных узлов. Fibre Channel имеет 4-х уровневую архитектуру. Два нижних уровня FC-0 (интерфейсы и среда) и FC-1 (кодирование/декодирование) перенесены в Gigabit Ethernet. Поскольку Fibre Channel является одобренной технологией, то такое перенесение сильно сократило время на разработку оригинального стандарта Gigabit Ethernet.

Блочный код 8B/10B аналогичен коду 4B/5B, принятому в стандарте FDDI. Однако код 4B/5B был отвергнут в Fibre Channel, потому что этот код не обеспечивает баланса по постоянному току. Отсутствие баланса потенциально может привести к зависящему от передаваемых данных нагреванию лазерных диодов, поскольку передатчик может передавать больше битов "1" (излучение есть), чем "0" (излучения нет), что может быть причиной дополнительных ошибок при высоких скоростях передачи.

1000Base-X подразделяется на три физических интерфейса, основные характеристики которых приведены ниже:

Интерфейс 1000Base-SX определяет лазеры с допустимой длиной излучения в пределах диапазона 770-860 нм, мощность излучения передатчика в пределах от -10 до 0 дБм, при отношении ON/OFF (сигнал / нет сигнала) не меньше 9 дБ. Чувствительность приемника -17 дБм, насыщение приемника 0 дБм;

Интерфейс 1000Base-LX определяет лазеры с допустимой длиной излучения в пределах диапазона 1270-1355 нм, мощность излучения передатчика в пределах от -13,5 до -3 дБм, при отношении ON/OFF (есть сигнал / нет сигнала) не меньше 9 дБ. Чувствительность приемника -19 дБм, насыщение приемника -3 дБм;

1000Base-CX экранированная витая пара (STP "twinax") на короткие расстояния.

Для справки в табл.1 приведены основные характеристики оптических приемо-передающих модулей, выпускаемых фирмой Hewlett Packard для стандартных интерфейсов 1000Base-SX (модель HFBR-5305, =850 нм) и 1000Base-LX (модель HFCT-5305, =1300 нм).

Таблица 1. Технические характеристики оптических приемо-передатчиков Gigabit Ethernet

Поддерживаемые расстояния для стандартов 1000Base-X приведены в табл.2.

Таблица 2. Технические характеристики оптических приемо-передатчиков Gigabit Ethernet

При кодировании 8B/10B битовая скорость в оптической линии составляет 1250 бит/c. Это означает, что полоса пропускания участка кабеля допустимой длины должна превышать 625 МГц. Из табл. 2 видно, что этот критерий для строчек 2-6 выполняется. Из-за большой скорости передачи Gigabit Ethernet, следует быть внимательным при построении протяженных сегментов. Безусловно предпочтение отдается одномодовому волокну. При этом характеристики оптических приемопередатчиков могут быть значительно выше. Например компания NBase выпускает коммутаторы с портами Gigabit Ethernet, обеспечивающими расстояния до 40 км по одномодовому волокну без ретрансляций (используются узкоспектральные DFB лазеры, работающие на длине волны 1550 нм).

особенности использования многомодового волокна

В мире существует огромное количество корпоративных сетей на основе многомодового волоконно-оптического кабеля, с волокнами 62,5/125 и 50/125. По этому естественно, что еще на этапе формирования стандарта Gigabit Ethernet возникла задача адаптации этой технологии для использования в существующих многомодовых кабельных системах. В ходе исследований по разработке спецификаций 1000Base-SX и 1000Base-LX была выявлена одна очень интересная аномалия, связанная с использованием лазерных передатчиков совместно с многомодовым волокном.

Многомодовое волокно конструировалось для совместного использования со светоизлучающими диодами (спектр излучения 30-50 нс). Некогерентное излучение от таких светодиодов попадает в волокно по всей площади светонесущей сердцевины. В результате в волокне возбуждается огромное число модовых групп. Распространяющийся сигнал хорошо поддается описанию на языке межмодовой дисперсии. Эффективность использования таких светодиодов в качестве передатчиков в стандарте Gigabit Ethernet низкая, в силу очень высокой частоты модуляции - скорость битового потока в оптической линии равна 1250 Мбод, а длительность одно импульса - 0,8 нс. Максимальная скорость, когда еще используются светодиоды для передачи сигнала по многомодовому волокну, составляет 622,08 Мбит/c (STM-4, c учетом избыточности кода 8B/10B битовая скорость в оптической линии 777,6 Мбод). По этому Gigabit Ethernet стал первым стандартом, регламентирующим использование лазерных оптических передатчиков совместно с многомодовым волокном. Площадь ввода излучения в волокно от лазера значительно меньше, чем размер сердцевины многомодового волокна. Этот факт сам по себе еще не приводит к проблеме. В то же время, в технологическом процессе производства стандартных коммерческих многомодовых волокон допускается наличие некоторых некритичных при традиционном использовании волокна дефектов (отклонений в пределах допустимого), в наибольшей степени сосредоточенных вблизи оси сердцевины волокна. Хотя такое многомодовое волокно полностью удовлетворяет требованиям стандарта, когерентный свет от лазера, введенный по центру такого волокна, проходя через области неоднородности показателя преломления, способен расщепиться на небольшое число мод, которые затем распространяются по волокну разными оптическими путями и с разной скоростью. Это явление известно как дифференциальная модовая задержка DMD. В результате появляется фазовый сдвиг между модами, приводящий к нежелательной интерференции на приемной стороне и к значительному росту числа ошибок (рис.3а). Замети, что эффект проявляется только при одновременном стечении ряда обстоятельств: менее удачное волокно, менее удачный лазерный передатчик (разумеется удовлетворяющие стандарту) и менее удачный ввод излучения в волокно. С физической стороны, эффект DMD связан с тем, что энергия от когерентного источника распределяется внутри небольшого числа мод, в то время как некогерентный источник равномерно возбуждает огромное число мод. Исследования показывают, что эффект проявляется сильней при использовании длинноволновых лазеров (окно прозрачности 1300 нм).

Рис.3. Распространение когерентного излучения в многомодовом волокне: а) Проявление эффекта дифференциальной модовой задержки (DMD) при осевом вводе излучения; б) Неосевой ввод когерентного излучения в многомодовое волокно.

Указанная аномалия в худшем случае может вести к уменьшению максимальной длины сегмента на основе многомодового ВОК. Поскольку стандарт должен обеспечивать 100-процентную гарантию работы, максимальна длина должна сегмента регламентироваться с учетом возможного проявления эффекта DMD.

Интерфейс 1000Base-LX . Для того, чтобы сохранить большее расстояние и избежать непредсказуемости поведения канала Gigabit Ethernet из-за аномалии, предложено вводить излучение в нецентральную часть сердцевины многомодового волокна. Излучение из-за апертурного расхождения успевает равномерно распределиться по всей сердцевине волокна, сильно ослабляя проявление эффекта, хотя максимальная длина сегмента и после этого остается ограниченной, (табл.2). Специально разработаны переходные одномодовые оптические шнуры MCP (mode conditioning patch-cords), у которых один из соединителей (а именно тот, который планируется сопрягать с многомодовым волокном) имеет небольшое смещение от оси сердцевины волокна. Оптический шнур, у которого один соединитель - Duplex SC со смещенной сердцевиной, а другой - обычный Duplex SC, может называться так: MCP Duplex SC - Duplex SC. Разумеется такой шнур не подходит для использования в традиционных сетях, например в Fast Ethernet, из-за больших вносимых потерь на стыке с MCP Duplex SC. Переходной MCP может быть комбинированным на основе одномодового и многомодового волокна и содержать элемент смещения между волокнами внутри себя. Тогда одномодовым концом он подключается к лазерному передатчику. Что же касается приемника, то к нему может подключаться стандартный многомодовый соединительный шнур. Использование переходных MCP шнуров позволяет заводить излучение в многомодовое волокно через область, смещенную на 10-15 мкм от оси (рис.3б). Таким образом, сохраняется возможность использования интерфейсных портов 1000Base-LX и с одномодовыми ВОК, поскольку там ввод излучения будет осуществляться строго по центру сердцевины волокна.

Интерфейс 1000Base-SX . Так как интерфейс 1000Base-SX стандартизован только для использования с многомодовым волокном, то смещение области ввода излучения от центральной оси волокна можно реализовать внутри самого устройства, тем самым снять необходимость использования согласующего оптического шнура.

интерфейс 1000Base-T

1000Base-T - это стандартный интерфейс Gigabit Ethernet передачи по неэкранированной витой паре категории 5 и выше на расстояния до 100 метров. Для передачи используются все четыре пары медного кабеля, скорость передачи по одной паре 250 Мбит/c. Предполагается, что стандарт будет обеспечивать дуплексную передачу, причем данные по каждой паре будут передаваться одновременно сразу в двух направлениях - двойной дуплекс (dual duplex). 1000Base-T. Технически реализовать дуплексную передачу 1 Гбит/с по витой паре UTP cat.5 оказалось довольно сложно, значительно сложней чем в стандарте 100Base-TX. Влияние ближних и дальних переходных помех от трех соседних витых пар на данную пару в четырехпарном кабеле требует разработки специальной скремблированной помехоустойчивой передачи, и интеллектуального узла распознавания и восстановления сигнала на приеме. Несколько методов кодирования первоначально рассматривались в качестве кандидатов на утверждение в стандарте 1000Base-T, среди которых: 5- уровневое импульсно-амплитудное кодирование PAM-5; квадратурная амплитудная модуляция QAM-25, и др. Ниже приведены кратко идеи PAM-5, окончально утвержденного в качестве стандарта.

Почему 5-уровневое кодирование. Распространенное четырехуровневое кодирование обрабатывает входящие биты парами. Всего существует 4 различных комбинации - 00, 01, 10, 11. Передатчик может каждой паре бит установить свой уровень напряжения передаваемого сигнал, что уменьшает в 2 раза частоту модуляции четырехуровневого сигнала, 125 МГц вместо 250 МГц, (рис.4), и следовательно частоту излучения. Пятый уровень добавлен для создания избыточности кода. В результате чего становится возможной коррекция ошибок на приеме. Это дает дополнительный резерв 6 дБ в соотношении сигнал/шум.

Рис.4. Схема 4-х уровневого кодирования PAM-4

уровень MAC

Уровень MAC стандарта Gigabit Ethernet использует тот же самый протокол передачи CSMA/CD что и его предки Ethernet и Fast Ethernet. Основные ограничения на максимальную длину сегмента (или коллизионного домена) определяются этим протоколом.

В стандарте Ethernet IEEE 802.3 принят минимальный размер кадра 64 байта. Именно значение минимального размера кадра определяет максимальное допустимое расстояние между станциями (диаметр коллизионного домена). Время, которого станция передает такой кадр - время канала - равно 512 BT или 51,2 мкс. Максимальная длина сети Ethernet определяется из условия разрешения коллизий, а именно время, за которое сигнал доходит до удаленного узла и возвращается обратно RDT не должно превышать 512 BT (без учета преамбулы).

При переходе от Ethernet к Fast Ethernet скорость передачи возрастает, а время трансляции кадра длины 64 байта соответственно сокращается - оно равно 512 BT или 5,12 мкс (в Fast Ethernet 1 BT = 0,01 мкс). Для того, чтобы можно было обнаруживать все коллизии до конца передачи кадра, как и раньше необходимо удовлетворить одному из условий:

В Fast Ethernet был оставлен такой же минимальный размер кадра, как в Ethernet. Это сохранило совместимость, но привело к значительному уменьшению диаметра коллизионного домена.

Опять же в силу преемственности стандарт Gigabit Ethernet должен поддерживать те же минимальный и максимальный размеры кадра, которые приняты в Ethernet и Fast Ethernet. Но поскольку скорость передачи возрастает, то соответственно уменьшается и время передачи пакета аналогичной длины. При сохранении прежней минимальной длины кадра это привело бы к уменьшению диаметра сети, который не превышал бы 20 метров, что могло быть мало полезным. Поэтому, при разработке стандарта Gigabit Ethernet было принято решение увеличить время канала. В Gigabit Ethernet оно составляет 4096 BT и в 8 раз превосходит время канала Ethernet и Fast Ethernet. Но, чтобы поддержать совместимость со стандартами Ethernet и Fast Ethernet, минимальный размер кадра не был увеличен, а было добавлено к кадру дополнительное поле, получившее название "расширение носителя".

расширение носителя (carrier extension)

Символы в дополнительном поле обычно не несут служебной информации, но они заполняют канал и увеличивают "коллизионное окно". В результате, коллизия будет регистрироваться всеми станциями при большем диаметре коллизионного домена.

Если станция желает передать короткий (меньше 512 байт) кадр, до при передаче добавляется это поле - расширение носителя, дополняющее кадр до 512 байт. Поле контрольной суммы вычисляется только для оригинального кадра и не распространяется на поле расширения. При приеме кадра поле расширения отбрасывается. Поэтому уровень LLC даже и не знает о наличии поля расширения. Если размер кадра равен или превосходит 512 байт, то поле расширения носителя отсутствует. На рис.5 показан формат кадра Gigabit Ethernet при использовании расширения носителя.

Рис.5. Кадр Gigabit Ethernet с полем расширения носителя.

пакетная перегруженность (Packet Bursting)

Расширение носителя - это наиболее естественное решение, которое позволило сохранить совместимость со стандартом Fast Ethernet, и такой же диаметр коллизионного домена. Но оно привело к излишней трате полосы пропускания. До 448 байт (512-64) может расходоваться в холостую при передаче короткого кадра. На стадии разработки стандарта Gigabit Ethernet компанией NBase Communications было внесено предложение по модернизации стандарта. Эта модернизация, получившая название пакетная перегруженность, позволяет эффективней использовать поле расширения. Если у станции/коммутатора имеется несколько небольших кадров для отправки, то первый кадр дополняется полем расширения носителя до 512 байт, и отправляется. Остальные кадры отправляются вслед с минимальным межкадровым интервалом в 96 бит, с одним важным исключением - межкадровый интервал заполняется символами расширения, (рис.6а). Таким образом среда не замолкает между посылками коротких оригинальных кадров, и ни какое другое устройство сети не может вклиниться в передачу. Такое пристраивание кадров может происходить до тех пор, пока полное число переданных байт не превысит 1518. Пакетная перегруженность уменьшать вероятность образования коллизий, поскольку перегруженный кадр может испытать коллизию только на этапе передачи первого своего оригинального кадра, включая расширение носителя, что безусловно увеличивает производительность сети, особенно при больших нагрузках (рис.6-б).

Рис.6. Пакетная перегруженность: а) передача кадров; б) поведение полосы пропускания.

По материалам компании «Телеком Транспорт»

Многие россияне уже успели познать прелести гигабитного Ethernet"а. Домашние пользователи в РФ все чаще отдают предпочтение суперскоростному Интернет-доступу.

– У вас еще нет Gigabit Ethernet? Тогда мы идем к вам! Мы расскажем, как правильно построить домашнюю сеть на гигабитных скоростях, какой маршрутизатор выбрать, какой максимальной скорости можно достигнуть при подходящем оборудовании, а также насколько дорого это вам обойдется.

Всего несколько лет назад технология Gigabit Ethernet использовалась только телеком-операторами и крупными компаниями: в корпоративных сетях, локальных сетях, для транспортировки трафика на большие расстояния и т.п. Домашние абоненты и не думали о том, чтобы заполучить такие скорости. Но в 2012-2013 гг., благодаря усовершенствованию «софта» и «железа», а также широчайшему распространению Интернет-технологий, гигабитные скорости стали доступнее и реальнее для частных пользователей. Сегодня практически каждый житель мегаполиса имеет возможность построить у себя дома сеть с поддержкой Gigabit Ethernet.

Многие спросят: «А зачем вообще дома иметь Интернет со скоростями порядка 1 Гбит/с? Неужели мегабитного Интернета недостаточно для серфинга по сайтам, скачивания фильмов и зависания в соцсетях?»

Ответим развернуто.

Как домашний пользователь может использовать Gigabit Ethernet

Российские Интернет-пользователи, как впрочем и потребители домашнего Интернета по всему миру, чрезвычайно активно используют трафик. Объемы трафика, потребляемого в мире, с каждым месяцем (уже даже не годом) растут. Еще несколько лет назад мы были рады 1 Мбит/с, а еще раньше – готовы были скачивать фильм всю ночь, чтобы потом посмотреть его. Сегодня уже мало кто вообще скачивает видео, большинство смотрит прямо в онлайне. Кроме того, тысячи пользователей хотят HD-качество, и готовы платить за него. А чтобы смотреть и качать видео в высоком качестве нужен скоростной безлимитный Интернет.

Также в последнее время популярность приобретает торрент-телевидение, позволяющее смотреть телевизор через Интернет, совершенно бесплатно. Некоторые пользователи уже стали отказываться от кабельного и спутникового TV, другие пользуются торрент-телевидением как новым интересным сервисом и надеются на его скорую популяризацию. Но в любом случае для торрент-TV нужен быстрый Интернет, да еще и безлимитный, иначе эта затея обойдется дороже, чем обычное кабельное.

Очень важным сегментом потребителей широкополосного скоростного Интернета являются геймеры, которые играют онлайн. Сегодня существует множество онлайновых игр, ради которых молодежь (да и не только) апгрейдит свои ПК, платит за безлимитный Интернет с высокими скоростями соединения. Более того, на конец 2013 г. запланирован выход новой культовой игры Survarium от создателей S.T.A.L.K.E.R. Это будет онлайн игра с бесплатными аккаунтами. Учитывая то, сколько россиян играло в легендарного S.T.A.L.K.E.R, Интернет-провайдерам стоит приготовиться к новому наплыву абонентов, готовых платить за более быстрый и дорогой доступ в Сеть. А пользователям можно начинать готовиться уже сейчас – и гигабитный Интернет может стать первым шагом в этой подготовке.

Одним словом, найти применение Gigabit Ethernet в домашней сети очень просто, если вы человек ИТ-продвинутый и используете современные технологии по полной.

Реальная скорость Gigabit Ethernet – где подвох?

Фраза «гигабитный Интернет» звучит громко, но действительно ли вы получите минимум 1 Гбит/с? На самом деле такая скорость достигается лишь в идеальных условиях, получить ее дома нереально, даже если вы установите оборудование, поддерживающее Gigabit Ethernet, настроите все, как надо, закажете у провайдера гигабитный пакет. Конечно, вы получите скорость в 1 тысячу раз выше, чем при 1 Мбит/с, ведь для мегабитного Интернета действуют все те же ограничения. Но давайте посчитаем, какой будет ваша скорость доступа в Сеть.

Считать будем, пользуясь обычной арифметикой, по «стандартному» подходу. Кроме того, будем для простоты округлять: 1 килобит = 1000 бит, а не 1024 бит. В этом случае 1 Гигабит равен 1000 мегабитов. Но на жестком диске информация хранится отнюдь не в битах, а в байтах – более крупных единицах. Как всем известно, 1 байт = 8 бит. Для удобства объем информации и скорость ее передачи принято считать в разных единицах, и это часто сбивает с толку пользователя, заставляя его ожидать большего, чем есть на самом деле.

Таким образом, скорость передачи реальных файлов будет в 8 раз меньше, чем говорит провайдер, поскольку провайдеры и программы для тестирования скорости считают биты. Наш 1 Гбит/с (1 000 000 000 бит/с) превращается в 125 000 000 байтов (разделили на 8). Получается, что 1 Гбит/с = 125 Мбайт/с.

Но проблема в том, что домашний пользователь в силу разных обстоятельств, не всегда зависящих от него, получает реально только около 30% от идеальных 125 Мбайт/с. То есть нам достается уже порядка 37 Мбайт/с. Это все, что остается от 1 Гбит/с. Но если смотреть на эту цифру в сравнении с 1 Мбит/с, то мы все равно получим в 1 тыс. раз более быстрый Интернет.

Оборудование домашней сети под Gigabit Ethernet

Создать дома условия для сети Gigabit Ethernet сегодня вполне возможно. Причем если у вас современный ПК, то понадобится не очень большое переоборудование, и стоить оно будет не так много, как может показаться на первый взгляд. Самое главное при этом – удостовериться, что все ваши основные устройства поддерживают Gigabit Ethernet. Ведь если хотя бы одно из них не будет рассчитано на такие скорости, то в итоге вы получите максимум 100 Мбит/с.

Если вы хотите добиться гигабитных скоростей, то вам понадобится следующее оборудование с поддержкой 1 Гбит/с:

  • маршрутизатор, поддерживающий Gigabit Ethernet;
  • сетевая карта (Ethernet-адаптер, сетевой адаптер);
  • сетевой контроллер;
  • концентратор/коммутатор;
  • жесткий диск;
  • кабели должны быть рассчитаны на 1 Гбит/с.

Каждое из перечисленных устройств является важным звеном сети, от каждого зависит итоговая скорость передачи данных. Так что давайте более внимательно рассмотрим каждое из них.

Wi-Fi роутер. Вам нужен гигабитный роутер, т.е. с поддержкой Gigabit Ethernet. Эти маршрутизаторы несколько дороже мегабитных, ведь они рассчитаны на более высокие скорости. В принципе, на рынке достаточно предложений под брендами Asus, TP-LINK, D-Link и проч. Но основывайте свой выбор не только на перечне функций, характеристиках и дизайне. Обязательно просмотрите форумы (причем не меньше 5-ти) с отзывами реальных потребителей, чтобы удостовериться в том, что маршрутизатор будет работать долго и надежно.

Сетевая карта. Это устройство может быть интегрированным в материнскую плату или отдельным. Сетевой адаптер для гигабитной сети должен обязательно поддерживать Gigabit Ethernet. Если вашему ПК более 2-3 лет, то скорее всего сетевая карта устарела и не поддерживает такие высокие скорости. Если же вы недавно приобрели компьютер, то вполне возможно, что апгрейдить сетевой адаптер не придется. Но в любом случае проверьте характеристики конкретно вашей сетевой карты на предмет совместимости с Gigabit Ethernet сетью.

Сетевой контроллер. Если вы строите домашнюю сеть, то важно, чтобы каждый компьютер в этой сети имел гигабитный контроллер. Иначе достаточные скорости получат лишь те ПК, которые такой имеют. Как и сетевая карта, сетевой контроллер может быть отдельным или интегрированным в материнскую плату. Обычно в современные ПК по умолчанию устанавливают контроллеры, поддерживающие 1 Гбит/с. Так что возможно, что вам не придется ничего модифицировать для Gigabit Ethernet.

Концентратор/коммутатор. Это один из самых дорогих компонентов домашней сети. Зачастую он уже есть в роутере. Но проверьте, поддерживает ли он гигабитные скорости. Важно! Коммутатор эффективнее концентратора, поскольку он направляет данные только на один конкретный порт, а концентратор – на все сразу. Используя коммутатор можно существенно экономить ресурс, не распыляя его на лишние порты.

Жесткий диск. Кому-то это может показаться странным, но жесткий диск серьезно влияет на скорость доступа в Интернет. Дело в том, что именно жесткий диск направляет данные на сетевой контроллер, и от их качественного соединения зависит то, насколько быстро вы сможете передавать и принимать данные. Желательно, чтобы контроллер имел интерфейс PCI Express (PCIe), а не PCI. А жесткий диск должен иметь разъем SATA, а не IDE, поскольку последний поддерживает слишком малые скорости.

Сетевой кабель. Естественно, кабель является важной частью домашней гигабитной сети. Можно выбрать кабели типа «витая пара» категории Cat 5 и Cat 5e (используются для прокладки телефонных линий и локальных сетей – их достаточно для Gigabit Ethernet) или же немного переплатить и взять кабель Cat 6 (специально разработанный под Gigabit Ethernet и Fast Ethernet). Длина витой пары должна составлять не больше 100 м, иначе сигнал начинает затухать и нужной скорости Интернет-соединения не добиться. Кроме того, при размещении кабелей в квартире обратите внимание на то, что их нежелательно прокладывать рядом с проводами электропитания (подробнее о причинах читайте ).

И последний важный фактор для организации домашней сети Gigabit Ethernet – это программное обеспечение. Операционная система на ПК должна быть посвежее. Если это Windows, то не ранее Windows 2000 (да и то придется покопаться в настройках). Версии XP, Vista, Windows 7 поддерживают гигабитный Интернет по умолчанию, поэтому проблем не должно возникнуть. С другими ОС может возникнуть необходимость дополнительного настраивания.

Топ-5 лучших домашних Wi-Fi маршрутизаторов,
поддерживающих Gigabit Ethernet, 2013

1. ASUS RT-N66U – отличная модель, мощная и надежная. Работает одновременно в двух частотных диапазонах – 2,4 и 5 ГГц. Радует высокая скорость передачи данных – заявлено 900 Мбит/с. Для построения домашней Gigabit Ethernet сети отлично подходит. Но нужно перепрошивать, чтобы повысить производительность и избавиться от ряда проблем, которые возникают на родной прошивке. Впрочем, большинство роутеров требуют перепрошивки сразу или вскоре после покупки. Стоимость составляет порядка 4,5-5 тыс. руб.

2. D-Link DIR-825 – неплохой выбор. Это 2-диапазонный роутер, достаточно «нафаршированный». Рабочие частоты: 2,4 и 5 ГГц; доступно одновременное использование обеих. Данный маршрутизатор имеет оптимальное на рынке соотношение «цена-качество». Среди преимуществ – широкий канал раздачи Wi-Fi (может потянуть до 50 абонентов). С точки зрения пользователей, наиболее заметным минусом является яркая светодиодная индикация устройства, но это, скорее, дело вкуса, а не качества девайса. Что касается прошивки, то можно оставить и родную, но для повышения производительности рекомендуется перепрошить. Цена маршрутизатора: около 3 тыс. руб.

3. TP-LINK TL-WDR4300 – очень скоростной маршрутизатор, отлично подходящий для домашних сетей. Производитель заявляет максимальную скорость передачи данных на уровне 750 Мбит/с. Одно из важных преимуществ данной модели над многими другими – возможность одновременно использовать две полосы частот: 2,4 и 5 ГГц. Благодаря этому пользователи могут одновременно соединяться с Интернетом и с телефонов, смартфонов, и с ноутбука, ПК или планшета. Еще один плюс данной модели в том, что у нее в комплект входят достаточно мощные антенны, позволяющие раздавать Интернет по Wi-Fi более чем на 200 м. Но для того чтобы все это функционировало нормально, прошивку с завода лучше поменять. Благодаря ряду манипуляций с ПО устройство будет работать намного лучше. Цена модели: порядка 3 тыс. руб.

4. Zyxel Keenetic Giga является неплохим маршрутизатором с несколькими полезными функциями. Основной его минус состоит в том, что работает роутер только в одном частотном диапазоне – 2,4ГГц. Но при этом скорость достаточная для того, чтобы смотреть IP-телевидение, пользоваться торрент-сетями (имеется встроенный торрент-клиент) и другими «прожорливыми» сервисами. Zyxel Keenetic Giga оснащен мощными антеннами, что позволяет создавать сети Wi-Fi (кстати, устройство поддерживает все стандарты Wi-Fi) с большим радиусом действия. Роутер достаточно прост в настройке, но прошивку, как и для большинства маршрутизаторов, придется поменять. Еще один плюс в том, что устройство сравнительно недорогое – от 3 до 4 тыс. руб.

5. TP-LINK TL-WR1043ND – достаточно мощный и дешевый гигабитный роутер. Правда, имеет несколько недостатков. Во-первых, работает только в диапазоне 2,4ГГц, что не очень удобно. Во-вторых, больше подходит опытным пользователям, поскольку родная прошивка, как во многих случаях, не очень хороша, а перепрошивать эту модель может быть непросто. Зато все это с лихвой компенсируется надежностью и мощностью данного маршрутизатора. Максимальная скорость передачи данных составляет 300 Мбит/с. Устройство отрабатывает свои деньги, поскольку цена модели равна всего от 2 тыс. руб.

Решите, необходимо ли совершенствовать вашу сеть.

  • Если вы, а также члены вашей семьи, регулярно загружаете большие файлы, транслируете медиа в интернете или выполняете другие задачи, сильно нагружающие вашу сеть, к примеру, сервер с файловым хостингом, или играете в онлайн игры, вы бы с удовольствием вложились в улучшение до Gigabit Ethernet.
  • Средним и большим предприятиям требуется, чтобы много пользователей были соединены по сети и одновременно могли повысить свою продуктивность.
  • Частные лица, которые используют интернет в одиночку для не ресурсоемких сетевых задач, как электронная почта, мгновенные сообщения или веб-серфинг, могут не увидеть выгоды в улучшении сетевого доступа до Gigabit Ethernet.
  • Осмотрите сетевые порты на ваших устройствах.

    • Если вы купили ваш компьютер, игровую консоль или другое устройство с сетевым доступом в последние два-три года, они, возможно, уже оснащены сетевыми портами, готовыми к работе с Gigabit Ethernet.
    • В Windows : Нажмите на меню пуск, нажмите на строку поиска (или нажмите "Run..." в соответствии с версией Windows), введите ncpa.cpl и нажмите «enter». Нажмите правой кнопкой по иконке вашего сетевого адаптера, потом левой по "Свойства". В открывшемся диалоговом окне нажмите кнопку "Настроить…". В новом диалоговом окне найдите пункт, соответствующий "типу соединения" или "Скорости", и выберите его. Если вы увидите в выпадающем меню "1.0 Гбит/с, Полный дуплекс" или что-то подобное, ваш компьютер готов к подключению по стандарту Gigabit Ethernet. Если нет, то вам возможно потребуется обновить ваше оборудование, как описано ниже в шаге 6.
    • В Ubuntu 12.04 : Нажмите правой кнопкой по иконке сетей на верхней панели рабочего стола, а потом левой кнопкой "Информация о соединении". В появившемся диалоговом окне посмотрите на значение "Скорость". Значение в 1000 Мбит/с отображает готовность системы к стандарту Gigabit Ethernet.
    • Для других устройств проверьте инструкцию и технические характеристики устройства. Ищите в характеристиках сетевого адаптера ключевые слова "gigabit" или "1000 Мбит/с".
  • Не забывайте о сетевых принтерах.

    • Если вы часто используете сетевой принтер, вы могли бы решить проверить и его на готовность к стандарту Gigabit Ethernet. Проверьте инструкцию, также как в шаге выше.
  • Проверьте ваши кабели.

    • Посмотрите на оплетку ваших сетевых кабелей и обратите внимание на тип кабеля, напечатанный на ней. Если они промаркированы "Cat5e", значит вы готовы. Если нет, вы можете купить новые кабели, что обычно недорого.
    • В большинстве случаев, кабели Cat6 не предоставляютзначительное повышение производительности в сравнении с кабелями Cat5e. Тем не менее, если вы хотите улучшить вашу сеть в будущем, вы можете использовать кабели Cat6.
  • Проверьте ваш роутер/свитч.

    • Даже если все части вашей сети будут улучшены до стандарта Gigabit Ethernet, а роутер и свитч будут все ещё с FastEthernet, они станут бутылочным горлышком вашей сети.
    • Для домашнего использования многие люди уже пользуются комбинацией роутера и свитча в едином устройстве. Домашний гигабитный роутер/свитч такой же.
  • * Для домашнего использования многие люди уже пользуются комбинацией роутера и свитча в едином устройстве. Домашний гигабитный роутер/свитч такой же.

    • Шаг 2 описывает, как проверить ваше сетевое оборудование на совместимость со стандартом Gigabit Ethernet. Если в определили, что совместимости нет, то у вас есть несколько вариантов.
    • Экономичным вариантом станет покупка гигабитной сетевой PCI-карты. Эта карта устанавливается сзади в ваш компьютер вместе с остальным оборудованием. Недостатками такой конфигурации станут скорости, ниже оптимальных, и всегда нужно будет помнить, какой из портов соединен с гигабитной сетевой картой, а какой –со старой FastEthernet. Случайное подключение кабеля Cat5e к порту FastEthernet не даст никакого прироста производительности.
    • Несколько более дорогим, но более эффективным решением может стать замена материнской платы вашего компьютера. Удостоверьтесь, что материнская плата оборудована встроенным гигабитным адаптером. Для максимальной скорости купите 64-битную материнскую плату, будучи уверенным в том, что ваш процессор совместим с ней, или вы сможете его купить. Большинство крупных компьютерных магазинов помогут вам выбрать правильный продукт и установят его для вас, чтобы убедится в совместимости оборудования.
  • Обновите программное обеспечение ваших устройств до новейшего.

    • Теперь, когда вы улучшили оборудование, или даже если вам не нужно было его улучшать, пришло время удостоверится в том, что все ваше программное обеспечение и драйверы обновлены до последней версии. Это нужно для максимальной скорости, производительности и надежности. Обновления, включенные в пакет обновлений Windows, могут быть недостаточными. Посетите веб-сайты производителей ваших устройств и загрузите последние обновления прямо из источников.
  • Улучшите ваше хранилище для медиафайлов и ОЗУ.

    • В идеале, файлы могут быть перемещены так быстро как медиа, имеется в виду жесткий диск, на котором они сохранены.
    • Удостоверьтесь, что скорость вашего жесткого диска(ов) на уровне 7200 об/мин, и рассмотрите организацию RAID 1 для увеличения скорости доступа.
    • Альтернативным решением может стать использование твердотельного накопителя. Он дороже обычного жесткого диска, но позволяет считывать и записывать почти мгновенно, позволяя исключить бутылочное горлышко обычных жестких дисков – их скорость.
    • Увеличение объема ОЗУ в вашей системе также увеличит общую производительность. Хорошим минимумом будут 8 Гб, но возможно вы не заметите значительного улучшения после 12 Гб ОЗУ, если вы не используете много ресурсоемких задач, как 3D-рендер или программы симуляции.
  • Не успело еще, как говорится, обсохнуть молоко на губах только что родившего­ся стандарта быстрого Ethernet, как комитет 802 приступил к работе над новой версией (1995). Ее почти сразу окрестили гигабитной сетью Ethernet, а в 1998 году новый стандарт был уже ратифицирован IEEE под официальным названием 802.3z. Тем самым разработчики подчеркнули, что это последняя разработка в линейке 802.3 (если только кто-нибудь в срочном порядке не придумает называть стандарты, скажем, 802.3ы. В свое время, Бернард Шоу предлагал расширить английский алфавит и включить в него, в частности, букву «ы», но был не убедителен.).

    Главные предпосылки создания 802.3z были те же самые, что и при создании 802.3u, - повысить в 10 раз скорость, сохранив обратную совместимость со старыми сетями Ethernet. В частности, гигабитный Ethernet должен был обеспечить дейтаграммный сервис без подтверждений как при односторонней, так и при групповой передаче. При этом необходимо было сохранить неизменными 48-битную схему адресации и формат кадра, включая нижние и верхние ограничения его размера. Новый стандарт удовлетворил всем этим требованиям.

    Гигабитные сети Ethernet строятся по принципу «точка - точка», в них не применяется моноканал, как в исходном 10-мегабитном Ethernet, который теперь, кстати, величают классическим Ethernet. Простейшая гигабитная сеть, показанная на схеме "а", состоит из двух компьютеров, напрямую соединенных друг с другом. В более общем случае, однако, имеется коммутатор или концентратор, к которому подсоединяется множество компьютеров, возможна также установка дополнительных коммутаторов или концентраторов (схема "б"). Но в любом случае к одному кабелю гигабитного Ethernet всегда присоединяются два устройства, ни больше, ни меньше.

    Гигабитный Ethernet может работать в двух режимах: полнодуплексном и полудуплексном. «Нормальным» считается полнодуплексный, при этом трафик может идти одновременно в обоих направлениях. Этот режим используется, когда имеется центральный коммутатор, соединенный с периферийными компьютерами или коммутаторами. В такой конфигурации сигналы всех линий буферизируются, поэтому абоненты могут отправлять данные, когда им вздумается. Отправитель не прослушивает канал, потому что ему не с кем конкурировать. На линии между компьютером и коммутатором компьютер - это единственный потенциальный отправитель; передача произойдет успешно даже в том случае, если одновременно с ней ведется передача со стороны коммутатора (линия полнодуплексная). Так как конкуренции в данном случае нет, протокол CSMA/CD не применяется, поэтому максимальная длина кабеля определяется исключительно мощностью сигнала, а вопросы времени распространения шумового всплеска здесь не встают. Коммутаторы могут работать на смешанных скоростях; более того, они автоматически выбирают оптимальную скорость. Самонастройка поддерживается так же, как и в быстром Ethernet .

    Полудуплексный режим работы используется тогда, когда компьютеры соединены не с коммутатором, а с концентратором. Хаб не буферизирует входящие кадры. Вместо этого он электрически соединяет все линии, симулируя моноканал обычного Ethernet. В этом режиме возможны коллизии, поэтому применяется CSMA/CD . Поскольку кадр минимального размера (то есть 64-байтный) может передаваться в 100 раз быстрее, чем в классической сети Ethernet, максимальная длина сегмента должна быть соответственно уменьшена в 100 раз. Она составляет 25 м - именно при таком расстоянии между станциями шумовой всплеск гарантированно достигнет отправителя до окончания его передачи. Если бы кабель имел длину 2500 м, то отправитель 64-байтного кадра при 1 Гбит/с успел бы много чего наделать даже за то время, пока его кадр прошел только десятую часть пути в одну сторону, не говоря уже о том, что сигнал должен еще и вернуться обратно.

    Комитет разработчиков стандарта 802.3z совершенно справедливо заметил, что 25 м - это неприемлемо малая длина, и ввел два новых свойства, позволивших расширить радиус сегментов. Первое называется расширением носителя. Заключается это расширение всего-навсего в том, что аппаратура вставляет собственное поле заполнения, растягивающее нормальный кадр до 512 байт. Поскольку это поле добавляется отправителем и изымается получателем, то программному обеспечению нет до него никакого дела. Конечно, тратить 512 байт на передачу 46 байт - это несколько расточительно с точки зрения эффективности использования пропускной способности. Эффективность такой передачи составляет всего 9 %.

    Второе свойство, позволяющее увеличить допустимую длину сегмента, - это пакетная передача кадров. Это означает, что отправитель может посылать не единичный кадр, а пакет, объединяющий в себе сразу много кадров. Если полная длина пакета оказывается менее 512 байт, то, как в предыдущем случае, производится аппаратное заполнение фиктивными данными. Если же кадров, ждущих передачу, хватает на то, чтобы заполнить такой большой пакет, то работа системы оказывается очень эффективной. Такая схема, разумеется, предпочтительнее расширения носителя. Эти методы позволили увеличить максимальную длину сегмента до 200 м, что, наверное, для организаций уже вполне приемлемо.

    Трудно представить себе организацию, которая потратила бы немало усилий и средств на установку плат для высокопроизводительной гигабитной сети Ethernet, а потом соединила бы компьютеры концентраторами, симулирующими работу классического Ethernet со всеми его коллизиями и прочими проблемами. Концентраторы, конечно, дешевле коммутаторов, но интерфейсные платы гигабитного Ethernet все равно относительно дороги, поэтому экономия на покупке концентратора вместо коммутатора себя не оправдывает. Кроме того, это резко снижает производительность, и становится вообще непонятно, зачем было тратить деньги на гигабитные платы. Однако обратная совместимость - это нечто священное в компьютерной индустрии, поэтому, несмотря ни на что, в 802.3z подобная возможность предусматривается.

    Гигабитный Ethernet поддерживает как медные, так и волоконно-оптические кабели. Работа на скорости 1 Гбит/с означает, что источник света должен включаться и выключаться примерно раз в наносекунду. Светодиоды просто не могут работать так быстро, поэтому здесь необходимо применять лазеры. Стандартом предусматриваются две операционных длины волны: 0,85 мкм (короткие волны) и 1,3 мкм (длинные). Лазеры, рассчитанные на 0,85 мкм, дешевле, но не работают с одномодовыми кабелями.

    Кабели гигабитного Ethernet

    Название

    Тип

    Длина сегмента

    Преимущества

    1000Base-SX

    Оптоволокно

    550м

    Многомодовое волокно (50, 62,5 мкм)

    1000Base-LX

    Оптоволокно

    5000м

    Одномодовое (10 мкм) или многомодовое (50, 62,5 мкм) волокно

    1000Base-CX

    2 экранированные витые пары

    25м

    Экранированная витая пара

    1000Base-T

    4 неэкранированные витые пары

    100м

    Стандартная витая пара 5-й категории

    Официально допускается использование трех диаметров волокна: 10, 50 и 62,5 мкм. Первое предназначено для одномодовой передачи, два других - для многомодовой. Не все из шести комбинаций являются разрешенными, а максимальная длина сегмента зависит как раз от выбранной комбинации. Числа, приведенные в таблице, - это наилучший случай. В частности, пятикилометровый кабель можно использовать только с лазером, рассчитанным на длину волны 1,3 мкм и работающим с 10-микрометровым одномодовым волокном. Такой вариант, видимо, является наилучшим для магистралей разного рода кампусов и производственных территорий. Ожидается, что он будет наиболее популярным несмотря на то, что он самый дорогой.

    1000Base-CX использует короткий экранированный медный кабель. Проблема в том, что его поджимают конкуренты как сверху (1000Base-LX), так и снизу (1000Base-T). В результате сомнительно, что он завоюет широкое общественное признание.

    Наконец, еще один вариант кабеля - это пучок из четырех неэкранированных витых пар. Поскольку такая проводка существует почти повсеместно, то, похоже, это и будет самый популярный гигабитный Ethernet.

    Новый стандарт использует новые правила кодирования сигналов, передающихся по оптоволокну. Манчестерский код при скорости передачи данных 1 Гбит/с потребовал бы скорости изменения сигнала в 2 Гбод. Это слишком сложно и занимает слишком большую долю пропускной способности. Вместо манчестерского кодирования применяется схема, называющаяся 8В/10В. Как нетрудно догадаться по названию, каждый байт, состоящий из 8 бит, кодируется для передачи по волокну десятью битами. Поскольку возможны 1024 результирующих кодовых слова для каждого входящего байта, данный метод дает некоторую свободу выбора кодовых слов. При этом принимаются в расчет следующие правила:

    Ни одно кодовое слово не должно иметь более четырех одинаковых битов подряд;

    Ни в одном кодовом слове не должно быть более шести нулей или шести единиц.

    Почему именно такие правила?

    Во-первых, они обеспечивают достаточное количество изменений состояния в потоке данных, необходимое для того, чтобы приемник оставался синхронизированным с передатчиком.

    Во-вторых, количество нулей и единиц стараются примерно выровнять. К тому же многие входящие байты имеют два возможных кодовых слова, ассоциированных с ними. Когда кодирующее устройство имеет возможность выбора кодовых слов, оно, вероятно, выберет из них то, которое сравняет число нулей и единиц.

    Ссбалансированному количеству нулей и единиц потому придается такое значение, что необходимо держать постоянную составляющую сигнала на как можно более низком уровне. Тогда она сможет пройти через преобразователи без изменений. Люди, занимающиеся computer science, не в восторге от того, что преобразовательные устройства диктуют те или иные правила кодирования сигналов, но жизнь есть жизнь.

    Гигабитный Ethernet, построенный на 1000Base-T, использует иную схему кодирования, поскольку изменять состояние сигнала в течение 1 нс для медного кабеля затруднительно. Здесь применяются 4 витые пары категории 5, что дает возможность параллельно передавать 4 символа. Каждый символ кодируется одним из пяти уровней напряжения. Таким образом, один сигнал может означать 00, 01,10 или 11. Есть еще специальное, служебное значение напряжения. На одну витую пару приходится 2 бита данных, соответственно, за один временной интервал система передает 8 бит по 4 витым парам. Тактовая частота равна 125 МГц, что позволяет работать со скоростью 1 Гбит/с. Пятый уровень напряжения был добавлен для специальных целей - кадрирования и управления.

    1 Гбит/с - это довольно много. Например, если приемник отвлечется на какое-то дело в течение 1 мс и при этом забудет или не успеет освободить буфер, это означает, что он «проспит» примерно 1953 кадра. Может быть и другая ситуация: один компьютер выдает данные по гигабитной сети, а другой принимает их по классическому Ethernet. Вероятно, первый быстро завалит данными второго. В первую очередь переполнится буфер обмена. Исходя из этого было принято решение о внедрении в систему контроля потока (так было и в быстром Ethernet , хотя эти системы довольно сильно различаются).

    Для реализации контроля потока одна из сторон посылает служебный кадр, сообщающий о том, что второй стороне необходимо приостановиться на некоторое время. Служебные кадры - это, на самом деле, обычные кадры Ethernet, в поле Туре которых записано 0x8808. Первые два байта поля данных - командные, а последующие, по необходимости, содержат параметры команды. Для контроля потока используются кадры типа PAUSE, причем в качестве параметра указывается продолжительность паузы в единицах времени передачи минимального кадра. Для гигабитного Ethernet такая единица равна 512 нс, а паузы могут длиться до 33,6 мс.

    Гигабитный Ethernet был стандартизован, и комитет 802 заскучал. Тогда IEEE предложил ему начать работу над 10-гигабитным Ethernet. Начались долгие попытки найти в английском алфавите какую-нибудь букву после z. Когда стало очевидно, что такой буквы нет в природе, от старого подхода решено было отказаться и перейти к двухбуквенным индексам. Так в 2002 году появился стандарт 802.3ае. Судя по всему, появление 100-гигабитного Ethernet уже тоже не за горами.

    Решил я себе немного проапгрейдить компьютер, а так как мне надо было 2 сетевые карты и слотов не хватало, то понадобилась сетевая карта в PCI-E слот. Времени было достаточно потому решил купить на алиэкспрессе.

    Нашел, по описанию полностью устроила, по цене тоже. При проверке продавца показало, что уровень риска практически нулевой. Заказал, посылка пришла через 20 дней после отправки продавцом. Кстати, сейчас у продавца скидка или распродажа, но карта стоит 3.63.



    Но так как я не очень доверяю китайским производителям, то сначала внимательно посмотрел на плату. Интуиция меня не обманула, главная микросхема была припаяна мало того что со смещением, но еще и были залипы припоя в трех местах (обозначены стрелочками).

    Я не стал особо разбираться за что отвечают данные выводы, но залип был на ногах связи с микросхемой памяти, и выводы питания, т.е. плата гарантированно не определилась бы как минимум, как максимум я бы остался без нового компа.

    Ну и конечно смешное обозначение скорости линка в Герцах.

    Не вставляя в комп написал продавцу, что мол посылку получил, но не работает, плохо припаяна микросхема. На что он ответил что мол пришлите видео. Что он там собирался разглядеть, мне непонятно. Сказал ему что попробую сделать фото, но такое все мелкое, что врядли он что то увидит. Отправил сообщение.

    Не дождавшись ответа взял паяльник, убрал сопли, проверил карту - работает.

    Определилась карта как Realtek PCIe GBE Family Controller, а из-за у меня уже были установлены драйверы Realtek, то карта стала работать сразу, ничего доустанавливать не пришлось.
    Диспетчер оборудование пишет о ней -
    PCI\VEN_10EC&DEV_8168&SUBSYS_816810EC&REV_02\4&293AFFCC&1&00E0

    Протестировал скорость копирования, правда все уперлось в скорость порта роутера (с удивлением обнаружил, что мне нечем протестировать карту на гигабитной скорости), пока нечем протестировать гигабит, да и если честно, пока не вижу в нем крайней необходимости, хватает и 100 мегабит, но 100 мегабит PCI-E как то не видел, потому пускай живет. Тем более, что за эти деньги я у нас врядли куплю.

    В итоге написал продавцу что чип перепаял, карта работает, получение подтвержу, но очень недоволен. Качество изготовления очень плохое. В итоге продавец предложил возврат в 3 доллара, я согласился, собственно к продавцу у меня претензий особо не было, на контакт шел сразу и без проблем.

    Но суть не в этом, мораль данного микро-обзора в том, что на всякий случай перед тем, как вставить себе в компьютер новую железку, не поленитесь внимательно осмотреть ее, что бы не остаться без компьютера вообще.

    В общем доставка отлично, карта самая банальная, цена приемлемая, доставка быстрая, но качество хромает и довольно сильно.

    Наверное так собирали мою сетевку

    Планирую купить +6 Добавить в избранное Обзор понравился +28 +50